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Abstract

The axial losses of mass and energy at the ends of a theta pinch
are investigated.

The plasma is described by a one-fluid model with the following
assumptions: infinite electrical conductivity (G =e0), electron
temperature equal to ion temperature, isotropic pressure, and
radial equilibrium.

As boundary conditions for the magnetic field B it is assumed
that the current in the coil is constant in time and that B
is continued periodically at the end plane. For the dynamic
guantities Q , (g-V), P and the heat flow §’ boundary condi-
tions are used which allow free outflow at the end plane. The
initial condition corresponds to an already compressed plasma
in radial equilibrium.

The resulting system of partial differential equations for the
quantitiesq ,Tr',p and —1_3' as functions of r, z and t is sol-
ved numerically in magnetic field line coordinates. The main
advantage of this coordinate system is the more exact compu-
tation of effects parallel to the magnetic field lines, be-
cause there is no numerical diffusion.

It is investigated how the disturbance due to mass and energy
losses at the end of the theta pinch propagates into the inner
part of the vessel. The relative importance of kinetic energy,
heat conduction, and convection for the end losses is calculated.

This programme is intended as a first step towards a more sophi-
sticated programme with a two-fluid model including anisotropic
pressure.
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Introduction

The escape of the plasma from the ends of a theta pinch is
one of the main obstacles to confining a high temperature
plasma for a sufficiently long time in such an experiment.

As acontribution to a fluid theory for the plasma, this paper
is therefore mainly intended for describing this escape quan-
titatively, i.e. for determining the parameters Q, ;: p. and
B as functions of r, z, and t and hence, in particular, the

end losses of mass and energy.

The first stage in the development of such a two-dimensional
computer programme is provided by a relatively simple plasma
model, viz. the one-fluid model (ion and electron temperatures

equal) with isotropic pressure P;, =P Sm'.

The complicated compression processes (investigated in one-
dimensional programmes by D.Diichs /5/ and H.Fisser /6/ are
not treated in these calculations. The main purpose of the
programme is to investigate the dynamics in the z-direction
at times after compression when the effects of radial pro-

cesses are less pronounced.

The assumption of infinite electrical conductivity (G =o9),
i.e. an infinitely thin current carrying sheath, is not so
severe a restriction on the plasma at these relatively late

times as it may seem at first glance.

Furthermore, neglecting the inertia terms in the radial
direction, i.e. eliminating the oscillations in the r-direc-
tion and hence the description of the r-dependences by ra-
dial equilibrium, is admittedly a gross simplification, but
as the dynamics in the z-direction is our chief interest this

approach is adequate as a first approximation.
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The boundary conditions are particularly important for the
problem. Actually, the entire external space ought to be
calculated as well in order to describe exactly the distri-
bution of the magnetic field and the reaction of the escaping
plasma on the interior of the coil. This is virtually impos-
sible in view of the enormous computing time required. Since,
however, this reaction fortunately does not have much effect,
a periodic continuation was assumed for the magnetic field and
a free escape into the vacuum for the dynamic quantities. This

adequately simulates the actual conditions.

The system of coupled differential equations for this model
is treated in a special coordinate system in which the sur-
faces r = const of the cylindrical coordinates are replaced
by surfaces of constant magnetic flux. These curvilinear,
non-orthogonal, and time dependent magnetic field coordinates
are particularly suitable for treating the problem numeri-
cally.

The solutions Y = Y(r,z,t), Y : {Q ,V,p,g} , of the system
of differential equations show that the outflow is reduced by
introducing thermal conduction. This means that there is a
decline in the mass losses and the energy losses due to con-
vection and kinetic energy decrease. However, the total energy
and the local thermal energy decrease faster with time in

the case with thermal conduction since the loss mechanism

due to diffusion has to be taken into account as well. At
later times (when the total energy of the plasma is down to
about lo %) there is no difference in the total energy be-

tween the cases with and without thermal conduction.

The results of calculations for the ISAR III theta pinch
experiment are compared with the measurements of end losses
in thisdevice.




.

1. Fundamental equations of the model

In order to study a two-dimensional programme in a relatively
simple model first, only the most simple fundamental equations
were used for a start, viz. a one-fluid model, i.e. a fully

ionized plasma with equal ion and electron temperatures.

The following assumptions are made for the fully ionized

plasma:
a. ? = 0 infinite electrical conductivity
() (&) ) @ ) t .
by T = T (hence p =p owing to quasi-neutrality)
c. Pdﬁ = p a} isotropic pressure.

This yields a simplified system of equations, viz.

continuity equations of the entire plasma
equation of motion of the entire plasma,

pressure equation of the entire plasma (electrons and ions).
All collision terms vanish.

In generalized Ohm’'s law the pressure gradients a.e also neg-
lected in addition to the inertia terms and the Hall term
- >
j x B. Since infinite electrical conductivity ( & =), in
particular, is assumed in our case, i.e. ? = 0, Ohm’s law
is of the form:
— >
E+VxB = 0.

1.1 Transport coefficients - thermal conductivity

As this paper deals only with one pressure equation obtained
by adding the equations for the ion and electron pressures, the

coefficient of thermal conductivity is

gppiiony ® we 2
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The thermal conductivities of ions &  and electrons ;4

parallel to the magnetic field according to H.Fisser (13-

moment approximation) are
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these formulae being essentially the same as Spitzers /4/.

1.2 The system of equations

With due allowance for all of the above restrictions the funda-

mental equations of the model in question are as follows:

i 2
¢ ?&‘/0 T ‘;x/‘ (?6‘/{) Y‘\(ki’{)) = 0 (1.1)

06it) (Bt + Vb9 2 biy)) 4
to Plut) - €443, 8 = o

(1.2)
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2 = s~ —» - /s
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S.RBGFY = o (1
—é + —\Tx E = o0 (1

where special units have been chosen for the electromagnetic

quantities, viz.

E———»gz_: E— 4z B
(1
e A3
Vo it B ? B ;7

(the conventional symbols on the LHS being replaced by the ex-

pressions on the RHS).

.3)

LA4)

.5)

.6)

.7)

.8)




2. Coordinate system

The fundamental equations, a system of coupled partial differen-
tial equations for a region gz', are solved by using a coordi-
nate system specially fitted to this particular problem.

On the one hand, we want as simple a coordinate system as
possible (e.g. Cartesion or cylindrical coordinates) that con-
forms roughly to the geometry of the region. If, however, the
region is not bounded by coordinate surfaces, this invariably
leads to complicated boundary conditions (interpolation prob-
lems in numerical calculations). On the other hand, we can try
to fit the coordinate system to the region (including the boun-
dary), but this may only be possible with a complicated coordi-
nate system and requires a more elaborate formulation of the
system of equations (additional terms for transforming the
equations).

Cylindrical coordinates seem to be the most promising way

of numerically calculating the dynamics of a theta pinch
discharge in view of its geometry. This, however, entails
complicated interpolations for the boundaries. Two-dimensional
programmes have hitherto used such orthogonal coordinates in
r, z or non-orthogonal coordinates fitted to the coil shape
/7/. In general, however, the magnetic field lines will not
coincide with a set of coordinate lines. This means that many
effects, particularly those occurring parallel to the mag-
netic field lines (e.g. thermal conduction),can be numerically
calculated only with difficulty or else not exactly.

Example: Calculation of the thermal current in Cartesian

coordinates in which the magnetic field lines are diagonal.

E s
a) The thermal current from P, —=P
) 1 Fi L 1
—j”" 2 has to be distributed to P, and P,.
/ X *
//// b) Heat flows from P4-—bP4. As P4 is
Yy not known, it has to be calculated
4 from P,, P, by interpolation.
P4 19753
]

R
7r e Fig. 1
/




The errors resulting from this inaccuracy always lead to a

numerical thermal current perpendicular to the field lines.

For this reason it is advisable to introduce a coordinate system

in which a set of coordinate lines are magnetic field lines.
For the case of the theta pinch the surfaces r = const of the
cylindrical coordinates are thus replaced by surfaces of con-

stant magnetic flux.

2.1 Magnetic field lines as coordinate lines

The magnetic field lines in a theta pinch discharge do not, in
general, lie in surfaces r = const. Furthermore, their position
varies with time, firstly owing to the change of the coil field
and secondly owing to the dynamics of the plasma.
Using the magnetic field lines as coordinate lines complicates
the coordinate system in two ways:

1. It is curvilinear and non-orthogonal

2. It is itself a function of time,
Additional terms will thus be obtained when the fundamental
equations are transformed to these coordinates.
A general restrig&ion on the use of such a coordinate system is
that there ought to be any regions where B = O. For theta pinch
calculations this means that there has to be a magnetic field
trapped in the plasma. (Presumably, however, it will be possible
to connect regions without magnetic field to regions with mag-
netic field.)

But this is matched by the twofold advantage that pysical effects
can be described more exactly, and that many terms can be treated
more simply in these coordinates because no interpolation is ne-

cessary.

For the case of infinite electrical conductivity (G =o0), more-
over, the plasma is tied to the field lines; in particular, the

plasma-vacuum interface is a coordinate surface. This means that



the system of differential equations is simplified because
the compressed plasma covers a fraction of the coil radius,
and that numerical treatment by difference metlods can be
achieved with a reasonable size of computer ( IBM 7090,

approx. 32,000 storage locations).

2.11 Definition of the coordinate system

First it is assumed that the magnetic field has only meri-
dional components Br' Bz‘ i.e. the toroidal component B

vanishes. The flux function

r
7//",2,1‘/’=/ge("f*,*) ool (2,1)

then describes the magnetic field by the field lines F(r,z,t)=
const,
Differentiation with respect to r yields the BZ component,

differentiation with respect to z yields the Br component

—_— —»

(because the magnetic field is solenoidal, V-R =
42(68)+ 2B = o )
B, (at) = L2 Flad 2,2)
2 rl%l > -;: 9\( r(%, 4
1 9 ‘
B (nat) = -+ 55 TG, (2.3)

It can easily be checked that

—

—
B . VF=0

i.e. F = const are in fact field lines.
The meridional component of the magnetic field can readily be

described in eXpressions of the flux function since V-B = O

is then automatically satisfied.

If it is assumed that BZ # 0, the explicit representation of the
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magnetic field lines is obtained by inverting the flux
function:

r = R(F,z,t) (2.4)

The three sets of coordinate surfaces are

FF = const

So

A

const

const,

The intersections of two coordinate surfaces yield the coordinate
lines in each case.

N

L[/

Y
™\
N\

Fig. 2 Coordinate lines

Although the obvious course from the mathematical point of

view is to use the orthogonal trajectories of F(r,z,t) instead

of z = const and thus obtain a triply orthogonal coordinate

system, this was rejected because these surfaces cannot be cal-
culated directly in a similar way. Numerical calculation is not
only time consuming, it also involves the risk of instability /87.
In order to derive the equation of motion for F(r,z,t), we consider
the derivative of eq. (2.1) with respect to time:



= Jioz

5§L F(r,z, t) = J/<——— 8, (riz,¢t) r’d (2.5)

Taking the z-component of the induction law(éq. (1.4»

2.1 2
W BZ = o7 (FESP)

and the ¢-component of Ohm's law

_ 2 2
't? = v, 8, - v B+ 7 (15; Br“'”j? Bz'),

where j% = 2 8, ~— B
(eq. (/7.5))7

is substituted for jf

we obtain from eq. (2.5)

7
2—12—/:— /‘Esp

or

L

J% F = -'P//K—é&"‘é B+ 7(%7‘3 ‘"“'5/%/ (2.6)

and, finally, with egs. (2.2) and (2.3)

IF oF [9 Y- *92/:/ .
S % e 7 T/t wE e

which is the equation of motion for F(r,z,t).

For infinite electrical conductivity ( n = 0) the substantial

derivative is %fF = 0, i.e. the plasma is tied to the field
lines.
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The equation of motion for R(F,z,t) is obtained by comparing
the differentials (first for t = const) of F = F(r,z,t):

2F 9F
dFF = ﬁdr+-ﬁ-dz = rBzdr-rBrdz
I'-R(F,Z,t).'
2R 2R
dr = dR = 3 dF + ~z dz
R
GF = 1 4R (92)

IO

Comparison of the coefficients gives

1 IR 1
r Bz = SR R F - 'é;' (2.8)
oF
IR
(2 B
2z 2R r
r Br = —EE:— e - ﬁ; . (2.9)
oF

Comparison of the time dependent differentials

dF = %dr+%dz+%§-dt
and

dR = ;ng+3fz‘dz+?%dt
yields 2R

UV
ct
°
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For this purpose we compare the positions of a point with
given z on the the same field line F for t and t + dt, i.e.
dF = dz = 0. We then get

(2F
AR 3 el AE (2.10)
7 2F
(3F)
. aF 1
With eq. (2.6) and T FEET_
oF

we finally obtain

2R (3) 9 (1 9F, . P’F [foF
a_t,vr+vz¥)_-7r$(;9—r)+zgi/‘ﬁr) (2.11)

the equation of motion for R(F,z,t).

2.12 Be -component of the magnetic field

The flux function F(r,z,t) and the new coordinate lines R (F,z,t)

were introduced in case B? vanish. It shall now be shown that

the remarks in 2.11 are also applicable to the case B? # 0.
The induction law in the case of azimuthal symmetry ( 32- = 0)
is (in cylindrical coordinates) A

? 2

7t Br = % Fp

2 2 2

5t By = - (37 Ep - 55 E7)

Y] 159

7¢ Bz ™ 'FZr(rE‘f)‘
The electric field E = {Er’ E?, Ez is governed by

Ohm's Law:

E = -Vx§+7Vx§-L[V~P(e) - (7x B) xﬁ/.
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The flux function F(r,z,t) can now be defined as in 2.1l1l.

As the condition V x B=0 is not changed by B, # 0, we

can calculate B. and B, in the same way.

For the equation of motion of F(r,z,t) eq. (2.6)
%%::—ré"a

is also valid, but E? now depends on By by way of the Hall

term. This means that for Bf, # O the field lines are no longer

in meridional planes ¢ = const, but nevertheless in the

surfaces F = const, i.e. there are no components of B perpen-

dicular to F = const.

2.13 vacuum magnetic field

Because of eq. (1.5) it holds for a vacuum field where ?bg 0
that

ﬁxg=0

which is expressed in components as follows:

J
LAY
7z Zpizid (2.12)
2 p] ~
Sy E# g Bz = g
2 3
Pl 8,) = 0.

With egs. (2.2) and (2.3) we get for the y?—component

2 2
I’F _ 1 IF _, (2.13)
,-2 r 3/‘ 222 :

This is a second order partial differential equation (of the
elliptic type) known as Stoke's differential equation (same
as the Laplace equation except for the minus sign of the se-
cond term) .
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The same type of differential equation for R(F,z) in the
F-z space is obtained in the following way:

We consider Br and Bz as functions of F(r,z) and z thus:

Bi(l",Z) = Bi(R(F:Z):Z) = 'éi(F,Z) = gj_(F‘(I'.'Z).vZ)

aBr ) 3Br EE.+ aBr

22 2F 2z 2z

aBz _ BBZ EE

2r oF ir °
Equation (2.12) 7%7 Br - 7£7 Bz = 0 is then written first in
the form

BBr EE . ZBr 3 2BZ 35 s

oF 22 22 2F r :

With egs. (2.2) and (2.3) this becomes

1B, . B, 9B,
—ﬁ,—(-rBr)+-é—i———9T(rBz)=O. (2.14)

From egs. (2.8) and (2.9) we get

9 R,
B = (2.15)
r R RF
= .
” 5 (2.16)

Substituting the relations (2.15) and (2.16) for Br and Bz
in eq. (2.14) yields .
( (i des, %)(-ﬁfé—)-—%—-?—(—l-w =0
F RF ; RF 2F ' R RF
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which is differentiated to give a differential equation
for the field lines R = R(F,z)

2) 2 R+

(1 +R, o R, % R = 0. (2.17)

RFF -2 RF RZ RFZ + R

Near the axis (R — 0) all z derivatives vanish. For this
limiting case eqg. (2.17) becomes
R dt= = O m =w(R R.)
FF R oF F’
After integration we get first
1 2
R RF = 5 const

and finally

Lr? . L const® . F+ const' .
2 2
For R = O we also get F = O, i.e. const' = O. That is,

for R —» O the solution of the differential equation (2.17)

is

R = const - Fl/z.

Since working with the square root presents numerical problems,

a new variable s is introduced thus:

<2
F= 5 . (2.18)

The differential equation for the field lines R(F,z)
(eq. (2.17)) then becomes a differential equation for R(s,z)



47 <

2
2 1 2 Rs
(1 + R, ) (Rss SR Rs) -2 RR R + R R, + . (2.19)

The relation between the field lines and the magnetic field
is now

s
z R R (2.20)

S
B, = ¥®7 R, - (2.21)

For further discussions the following operators are defined:

2

o 2 1 2F 2 F \
Lc [F] E r T (F 7;) + ;—Z-é- (2.22)
2
[R] = (1 +R.2) R 2> RRR. +R2R 4+ F
LF z FF ~ F 'z Fz F zZ R (2.23)
Lo (RJ= (1+R°2) (R._ -LXR)-2RRR _+
S z ss s ''s 8z sz
5 (2.24)
2 ]
+Rs Rzz+—-——R A

The physical component of the current in the azimuthal direction

is

]

1 S
=-= L, [F] = Lg [R] . (2.25)

>
R RS

¢ c
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2.2 General transformation formulae

2.21 Coordinate transformation

The formulae for transformation from Cartesian coordinates

{xl, x2, x5 } (abbreviated in the following to KS1)
to general (curvilinear, non-orthogonal, time dependent) co-
ordinates {§ 1, 7,2, 5,3} (abbreviated to KS2)are

written in general representation thus:

= <ttt gt el v ) . (2.26)

The differential form of this is

i i
i )4 k Ix
dx = BEE d; + TE- dat , (2.27)
xi
where the ~Sic are the transgormation coefficients of a
contravariant vector and 2%%— the velocity of the new

coordinate system (KS2) in the old (KSl).

The transformation equations in our special case are

x* = R(s,z,t) cosg

{xi}—> x° = R(s,z,t) sincfw——»{é k]E[s,yo,z/, (2.28)
2

X = 2Z

The Christoffel symbols of the second kind are calculated to
give

[“1 _ Rss 1 _ _ _R [“1 - Rz

11 = "R 22 R 33 Ry
2 -2 - Rs |—-1 1 BRg 2 I-‘z i Vg
12/FL[} py e ™ 1% #iffggesciph 23 32 = R

S
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All other‘fﬁﬁk vanish.

The velocity of the new coordinate system {§ k} (KS2) relative
to the old {x;} (KS1) is obtained from eq. (2.27). We consider

a point dgk = 0 fixed in KS2. After a time dt 1t undergoes
in KS1 the shift

i X
dx = =t dt
We thus get
38 qos )
1 axt R -1
wi(x,t) = - | % sing |=w (Ext) (2.29)
\ o

k

as the velocity of the new system {§ } relative to the old
i

{x}.

The velocity ;k of KS1 in KS2 is obtained in the same way from

eq. (2.27) with ax! = o.

i b 4
X k X
0 = SEE dg™ + 3t dat .
v
Multiplying by —%%r and dividing by dt gives
o - 2 3B 48, | ok
DEE T dt X Tl ot
Because of
k k
a /E _ =k
S vl A 1 v
YV =k ng xi
we get ’ 0 = Skw+3-;-2t
and hence I S
R_7t
5 28 Xk 28Y _4 s v
Y- = - —2 w(E,¢t) 0 = W (F.8)... (2.30)
It ot x1
0
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We now transform the various quantities.

The mass density ? (scalar)

?(x:t) - ?( X(g,t),t ) - §(g(x:t):t ) = F(é:t)

is invariant under transformations (KS1 —= KS2)

O(&,t) = §(z&,¢). (2.31)

Contravariant vectors (contravariant tensors of rank 1 )

transform as

l-\i(;,t) - g’g A" (EE). - (2.32)

k i
The velocity of KS2 [§ .} in KS1 [x } is thus

wl(Et) = 9 " (5,0)
§u.
or
1 2
= =— R
R_ ot
~ agd'—i 8 ==
wh(g,t) = = wi(,t) = 0 = -wW"  (2.33)
!
0
The contravariant vector components of the velocity
i poni |
vi(x,t) = v (E,t) thus transform as
v (g:t) & "5""" v (é:t) + W
Ew
b 4
viE,t) = & (g aax) . (2.34)

"
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The transformation of the contravariant components of the pressure

tensor PH(x,t) = P( x(£,£),t ) = PK(E,¢) 1s

-1k axt K oup
P = == == P .t (2.35)
e 95y Ci6t)
or conversely
2% 2P 4y
PeP(E,t) = —2 —— P-° .
5 it 2K

. ik ik
In the new coordinate system KS2 a scalar pressure P =pbd

will thus be of the form

14R R
R [
o
DK “Bs 1 -
P = 9/ P = 0 55 0 P. (2.36)
R”.
RZ
- 0 1
R

The pressure tensor transforms like a contravariant tensor
owing to the definition of the pressure
400
P“‘B(xi,t) - m/u"" uB f(xi,wk,’c) Ew

- 00

k b

where ul is the peculiar velocity (difference between the
particle velocity and mean mass velocity v ). Thus, the ve-
locity terms of the coordinate system that appear when the
velocity components are transformed cancel. For the sake of

clarity the transformations of the various types of differen-

tial expressions that occur in the fundamental equations are set

out below.
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The transformation of the derivative with respect to time

— - Aik is as follows:

9 ik 2 ([ IxK da/ ~y 2 2x )/
A ,t = A =
t i x=const ot <3§o{. —'jg[; é o 2@, 2§[3

(2.37)
The terms of the form vH -5%— Aik transform as follows:
v"‘azg—-Aik(x,t) (V7 + w¥) [3" A A“B(é,t)J . (2.38)
Xp. ’ﬁ—'v ’agm aéﬁ

2,1
For the transformation Of the divergences 73— A P’(X,t) we get

. Lip xt Touv mprv 1Y ] It wuw
I ,t) = —= A A AR A .
Xy (x:8) 1 [ %, ' - g 3§¢F v

(2.29)
i
The expression 2 [gx '%% AdﬁJin eqg. (2.38) can be rewritten in
the form é” éo(. E
J 3xi ;K -’aﬂ ’l)x IxK ~ol
A*Pl= —=—(A"") (2.40)
Qév [Béa aga 2§“ 2§f5 &

where

TaRy o 2 geR, peprP o, ARRCE
(A5F)._ -,5-5—1\ + A FP‘W+A e (2.41)

YV

e
The expression T [-2-29— 3x K“’BJ in eq. (2.37) can be further
7 L3T. 9%

rewritten to give

L) [3xi 3x "‘uﬁ]_ '3x:L zxk 2upB

% L2, 28, % g T A% I . (2.42)
L qum [t %K (W) LS syt u}'
w0, " e
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2.22 Transformation of the individual equations

Transformation of the continuity equation

The individual terms of the continuity equation (eq. (1.1)) trans-
form as shown in 2.21. The continuity equation in the new coor-
dinates is now written

2"' 3 ~~ ~ o~ o 'b ~ ~
-ﬁ-?-p—a—g;(?v#)+?vvl:"t+?(mw“+w”r#“’) = 0. (2.43)

Here the first two terms are formally equal to the corresponding
terms of the continuity equation in Cartesian coordinates. In
addition, because of the non-orthogonality of the coordinates

we get the term 5vrrﬁ(which vanishes as soon as Cartesian co-
ordinates are adopted).

The last term §(ﬁ“) " the divergence of the velocity of the

]
field lines, allows for the time dependence of the coordinates,
i.e. compression due to the change of coordinate system.

Transformation of the equation of motion

The equation of motion (eq. (1.2)) in KS1 is

0 (x,t) (%vi(x,t) F v"',b-%;vi ) + Fl(x,t) = 0
where
1 1 1
F (x,t) = F(p) + F(B)
Pipys ~om 'zr?c; PH(x, 1)
i
F(B) = - & I B

Transformation to KS2 in accordance with egs. (2.37), (2.38),
(2.39) yields

) ? i ~ ~ ~ ) Dxi ~ -
.5-6 (—3{-— (V“ + we )) - w” -,é-g-—v- (-j—g; (V“’ w"')) +

+
i s
+(\71’+7:")—-2—'(-2L (‘7“+ﬁ°"))+2?-c—Fu = 0.
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The second term again cancels (as in the continuity equation)
with part of the third term, The first term and the rest of
the third term are rewritten according to eq. (2.40) or (2.41)

to give
BCL oy Gy @ e @) @9+ 5 (5% 4§94 2 F% o
3§¢ 2t Yy w ?

which finally is rearranged as

oo S d SR  sa, o 1 B
5t W +2v(w)m+w (w)'+-57c-v +v(v) -§-F = 0.

The forces transform as follows:

The pressure force F?p) according to eq. (2.39) is

1
F(p)(x,t) = 3§w F(p)(€ 'C) = 26“ ( “V) .

For the scalar pressure p 1k (x,t) = ﬁik(ﬁ,t) = ﬁéucwe get from
eq. (2.36).

PY(E,t) = g% .

Because of (gik))k = 0 this then gives
Fry(E,t) =B (8%) + g*” (B) N (2.45)
(p) 13 »w agv o

To transform the Lorentz force F(B) we first rewrite in Car-
tesian coordinates (KS1) as follows. We regard 3 as a contra-
variant vector and write F(B) as

i 1 .k
i R e



- 25 -

where Bﬁ<is then a mixed tensor of rank 2 the components of
which are given by the coordinates (B], B2’ B3) of the vector
B(x,t):

&
0 B -B l
) 3 2 i
B, = -B, 0 B _ (2.46)
B, -B1 0

> . . g e G e &
The current j is given according to eq. (1.5) by j = V x B.

This can by written

Jm = —g_an:

Xy
where the purely contravariant tensor B™ is in turn given

by — ~n

B = -B}‘ 0 B1 . (2.47)
B -B1
The Lorentz force is thus
i i k i 2 k2
F(B)(x,t) = =B K ,j = -B k —33("; B . (2.48)

Bi - gﬂi B% .255
k % p o0,
k2 ’bxk 3](2 S0y
B = — B
g, o i
ko _ 2 gkt | i gwvy . & ooy
J Yeg it gpmo(BIX) i g e Y0
£ 3 Y
Consequently,
i g 979 1oy Wt~ 2P 2K =)
Pp)(x8) = =By 3 B = -5 PR, gy BV,
1 .
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and so
Fipy(6,t) = - B3 (BP), = - BY% JP (2.40)
where
By - gt %"l; (2.50)
Bap - ;x:—;f—ﬁakl (2.51)
5P (ﬁﬁvhv = 3%; BAY 4 BH f;@.+ BPECY, (2.52)

Transformation of the pressure equation

The equation for isotropic
logously to the continuity

A 5,97 25,5

w 2TV PTS
or

7 = By ype sy

== D + =— (VY p) +

t Ay

2.3 Fundamental equations

pressure eq. (1.3) transforms ana-
equation

B(V/+”), +5 (8 = o
% P 3%: TV o+ % P [(G” + ﬁ")ﬁ$-+
2 2 gr, gt ]
5 %)s +SFF, = 0.
¥ (2.53)

in rotational symmetric magnetic

field coordinates

The last step to the final

explicit form of the fundamental equa-

tions in magnetic field coordinates is merely to insert the Chri-

stoffel symbols in egs. (2.

the following expressions,
R R

; ss S
r’ . =Rl o

V1 Rs R

vV Rsz Rz

»3= TR_F*TE <

43, (2.44), and (2.53). This yields
which are abbreviated as shown:

%% 1n (RRS) =: GS (2.54)
2 -
3. In (RRg) =: GZ (2.55)



. 3 . B ) R‘C Rt Rss RS
(w”) —_— WY + Wh[ Y = -—(——-+-——- —_ 4 =] =
v 3, = s \Rg ] | |0 S6%E
R R
= St ,_t 2 —%—m(}ms) =: DIV W
R R L
s (2.56)
2.351 Continuity equation
The continuity equation is then
? ~ Y~ ~s V" ,~ .z ~ [~s ~7Z ]
-5-€§>+-,5-s—(§>v)+-,§-:z—(9v)+§> v> GS + v° GZ + DIV W| =
or in another form (2.57)
2 L ~S 9 ~Z
gD+ DV) + 52 (DF) = 0 (2.58)
with D : = §(RR))
2.%2 Equation of motion
For the equation of motion (2.44) we get
? ~s s 2 ~23)~‘ s Bs ~zRa vl (R "S-E’—s>
ﬁw (v$+v3—zw+w R$+V Rs W(f)SW"‘W R,
~c /o R
0 +2 ws(v"—ﬁ—‘) + 0 ¥
0 0 0
(2.59)
~ ~ ~ ~ P~ ~2Z~Z
o -Rig{Vs(Rssvs.}.ZRszVZ)_RV(PV"*‘ R,.V v}
7 ~s2 ~29 o 1 on ~s ~2
+(§{+VE+V3—1) Vel 4+ Tzv‘f’(RsvHRZv) +
v 0

0
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We find for F"é’p) (according to eq. (2.45))

2
(Lt Ed)5
Rse s L 02

Mo
F(p) = 0 ] (2.60)

( -

=}

? 2
s+t )P

w'::
u N

For the expllc1t expre351on of F% (eq. (2.49)) we first have to

calculate Bﬁ(g t), BeP (£58)°7, and jﬂ(g t) . In accordance
with eqg. (2.50) we first get for B p

[ 8

: R
R, (8,singp~ B, cosp) -7t B, =Ry (B,sinp=B,cos p) l

“ﬁ = %(33"/?: (Bycosep + st’h?)) 0 ~R (8,cosp+ B,sing)

R—fs (R2+1)(8, sing - B,cosg) % (R, B (B cos g +B,sing)) - R,(8,sing~B,cosp)

The relationship between the components (Bl' B2, B3) in Car-

tesian coordinates and (Br, B? " Bz) in cylindrical coordinates

is given by

B1 = Br cosg - B sinc‘o
B2 = Br sing + B cos ¢
53 = Bz .

Together with egs. (2.20) and (2.21), whichgive the relation between
Br' B, and the magnetic field lines R(s,z,t)' we finally obtain
for ﬁ"‘P

o
s
-R, By ) Ry B,
. p
By =|-25 (1 +R) 0 - SRRZ (2.61)
R s
L. 0'«r%B /o R. B

Rs 2 ¢ z Y
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The same procedures yield for B*P eq. (2.51)

s 2 1
0 - (1+R_.“) =B
R2R2 Z Rs 4
S
- o s R,
B = P 5 (1+RZ ) 0 - . (2.62)
R™ R R™R
s S
J T s R, 0
Rs ¢ R2R

By substituting eq. (2.62) in eq. (2.52) we get for JP

2 [1 1
-E[TBJ—EB? GZ

o =By 2 S 2 2 SRz S 2 SRz
P @) =(-= (14R )]" "'[ ] 1+R_°)GS+——2 02
)y 75 [p2g 2' Tz 22|20 | 7Bg 2 t*Re 2
S s S
2 [1 ] 1
Zs[ﬁs ?] Rg®
Differentiating and rearranging we get
R
1,9 z 2
"R {7z By * & By) J*
P - (RP - S = ¢
J (B”), = =3 Ls [R] = ] (2.63)
S
B
1 9 (7 ~Z
R, 7% 'R
where
2 1
LS[R] = (1 + R.%)(Rgp &% Rs) - 2RRR +
2 (2.64)

R
2 S
B RS Rzz + e
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is the differential operator applied to R(s,z,t) (eq.

for the vacuum magnetic field.

(2.24))

With egs. (2.61) and (2.62) the Lorentz force 5(3)(§,t)

is finally obtained according to eqg. (2.49), as

2
1+R B 2
5 g z 9 (3 s
R, {Bcr(Rz'Tz' TR, W R A,
S
Fooy = - B4 P = - = (9B+EZ-B)
(B) P Ren_ 9z T R ¥
S
2
R s R
z 2 2
Be (R 95 = 72 )% ""“"EL [R]

In the equation of motion (eq. (2.59)) (three scalar equations)

S

. . ~ ~ *
there are four velocities 5‘, v?, v%, and w>. A fourth relation

is provided by the equation of motion of the field lines

(eq. (2.11)):
F

2 7z 2 1 IFy , 2°F IF
% R = VetV F -Q'[r 7w Fw) + 2z§J///}3F)

r

where the differential expressions of F(r,z) are rewritten as

expressions of R(s,z). With egs. (2.2), (2.3), and (2.20)

9F S
-— = r B = e
ar z Rs
3 s
2 = ~ B = -g R,
s
and with egs. (2.22) and (2.25)
2 32F s
9 r Zr) b LQ[F] = -—3 1L [R]
R
s
we get i
AR = v, -v R +—sL_[R]
it o zZ "z R ] :

\

?)L [R

(2.65)
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The velocity components Ve and v, still appear in cylindrical

coordinates. Transformation to Cartesian coordinates yields

vr(r,cp,z) = vl(xl,xa,xj) cos¢ + va(xl,xa,xj) sine¢
v (r,¢,2) = v (x!,x2,x7) .

The relation between the velocity components in Cartesian co-
ordinates (KS1) vi(xl,xz,xj) and magnetic field line co-
ordinates (KS2) v« (s,¢,2) is provided by eq, (2.34):

i
vi(x,t) = X (V& + w%) .

1y

These transformation relations are used to replace vr(r, ¢ ,2)

and vz(r, ? ,2) in the above equation:

Zz IR 1

? ~S ~ ~Z
“fR = RgV +R, V' + 5% -7V RZ+—-—§-LS[R]
S
or
L_[R]
~S S
» = . (2.66)
’I—TRS

This reduces the equation of motion of the field lines (eq.(2.11))
to a simple expression for calculating v° (the velocity of the
plasma perpendicular to the field lines). LS[R]is proportional

to the current in the ¢ -direction. For infinite conductivity

3% vanishes (V°—= 0 for 71 —» 0) . The first of the three equations

of eq. (2.59) (equation for the s component), which centains both
WS Ve
3 and - %

the equation of motion of the field lines, the third and fourth

, should, therefore, be interpreted as

terms (ﬁﬁr IS+ GW(VS)'” ) representing an additional force that
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may be regarded as "inertia of diffusion".

2.33 Pressure equation

For the pressure equation (2.53) we get with 3= g

%5+-§%(§‘7$)+%(552)+(y-l)'ﬁ(—z-v +az\72)+
+ b (V3 08 + ¥% 6z + DIV W) + (2. 67)
+ 1 2 s ? 2z s N7z
y-1) (558 + -8 +87 6 +38%6z) = 0

) ~ ~
")_z_) DP +yDP(-—-— e 7)2— vz) 4
z

Z
¥ (L as® 4 4mas®) = 0

-+
—~
o2
1
fo)
~r
—~
::
~—

with

P : = p (RR)Y
s : = 8% (RR,)

Qs? : = 82 (RR)

~ ~
Note on the thermal current SM , Sy

The centravariant components of the thermal current 4? that
appear in eq. (2.67) and the componehts gu n—)cag— T , which
»

are covariant by definition as gradient of the temperature

T (E,t) = T(x,t) = %-, are related by the equations
Sk = g*s§,
2 o (2 . 69)
S, = ngS“ .
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In view of the fact that S° is neglected in Sect. 3.1 we
should discuss at this point the different representations
of the vector 4 (in KS2) with respect to the direction of
the base vectors.

The two triples of base vectors are written in a slightly

different form for this purpose. We have

{
2. - _Ix! the tangentsto the coordinate lines
k

I8k

) 71 .

and ' = ) the gradients on the coordinate

-

d sur faces.

.y

s=const. \

z=const.

Fig. 3 Base vectors for covariant s, and

contravariant ftk vector components

The thermal current vector 4ﬂ76;

,%“gfcan be represented in KS2

in two ways, viz.
~ . -uk
A = 5;'71-‘=5ﬂk-

The components in the direction of the base vectors are ob-

tained by forming

— ~ 3 ~ & k =
n'd = Stknent = $°8,5= 8!

i.e. the §¢ are the components of A in the direction of the
gradients of the coordinate surfaces (contravariant vector com-

ponents) .
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As the thermal conductivity 2¢ perpendicular to the magnetic
field lines is smaller than that parallel to the field lines
and, moreover, the temperature gradients in the s-direction
are relatively small, the thermal current perpendicular to
the coordinate surfaces s = const (i.e. in the direction 2.5)

is negligible relative to the thermal current in the z-direction
(§° « 8%

It will therefore be assumed in the following that

gszO

~

Because of the relationships ineq. (2.69) we get for the case

5% = o
= 2y: 2%
SZ = (1 + Rz ) 8°.
The thermal conductivity term in the case gs = 0 is thus
I gM(x,t) = (8%(E,t),, = 2572, 8% 6z =
WXy ’ *thr 7z
S s
7 A Z
= = ( ) + GZ =
o2 1 + R‘é 1 + R 2
Z z
7 2 4 i > 2
= TR T e
1 + Rz 1 + RZ

(2.70)
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3. The system of differential equations

In this section first the most essential restrictions on
the system of differential equations are discussed and then
it is put into the form in which it will finally be solved.

Mathematically speaking, the boundary initial value for the
escape of a plasma from a theta pinch shall be consistently

formulated.

3.1 The system of equations - further restrictions

To solve the problem some more simplifying assumpticns are
made at this point.

1) Infinite electrical conductivity ( ?’ = 0):
The assumption of © = oo , i.e. of an infinitely thin current
carrying sheath, is a gross violation of dynamics since the

motion of the plasma in the z-direction changes in the event of radial

diffusion. This assumption is justified to a certain extent, how-
ever, if the characteristic times of field diffusion are large re-
lative to those in which the z-dynamics are of interest. An esti-
mate of the diffusion time

22
4

where L is the thickness of the current carrying sheath, yields

al -

for experiments for which calculations were made
At x 10 nusec

The times of interest for the z-dynamics, i.e. in which the mass
has decreased to 1/¢ , are about 2.0 pnsec in such cases, this
being smaller than the diffusion time.

According to eq. (2.66) V° = "%’érﬁfZ/zaf infinite electrical
conductivity ? = O means that there is no transport of plasma at
all transverse to the field lines, i.e.

¥ =0 (3.1)
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2) Thermal current perpendicular to the field lines neglected :
s =0 (3.2)

Tt is obvious that the thermal current perpendicular to the

field lines can be neglected when estimating the thermal currents
§° ana $%. what is particularly important here is the ratio

of the coefficients of thermal conductivity X , The thermal con-
dvctivity AQ parallel to the magnetic field is given in Sect. 1.
The thermal conductivity 1& perpendicular to a strong magnetic
field is reduced relative to lg by a factor Légz or, to be

more precise, by /9]

1
£
o

&
K

For the parameters used in the calculations (B & 50 kG, kT = 400 eV,

n=3%x 1016cm—3) we get

P
4 ~ 7—5
N (o] s
Y,
3) No motion of plasma in ¥ —-direction:
¥ =0 (3.3)

This means that the plasma does not rotate. A detailed repre-

sentation of rotational processes in the plasma is obtained in

/107 .

4) No azimuthal component of the magnetic field:

B w0 (3.4)
: : . 9 _
Owing to the assumption of rotational symmetry ( (i; = o )

this means that no jZ currents flow.
5) Radial equilibrium:

—v'p—")kg - s (3.5)
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For later times of the theta pinch discharge such a condition is to-
lerably satisfied since the oscillations initiated by fast compression
have decayed to a certain extent. Calculation of the magnetic field
from this equilibrium condition without allowance for the inertia
terms (cf. 3.12) means that the radial oscillations are completely
damped. These radial oscillations do not greatly affect the z-motion.
Furthermore, the result of this damping is a mean value on which these
fast oscillations are superposed. Elimination of these radial oscil-
lations saves a great deal of computing effort.

3.11 Continuity equation

The continuity equation (eq. (2.57) or (2.58)) accordingly reduces to

’9 ~ {a ~ A o d
T %t =%V ) + ?[V CQ+DWJ (3.6)
2
with GZ = 57~ ln (RR) (3.7)
DIVW = 72—2— 1n (RR_). (3.8)

3.12 Eqgquation of motion and radial equilibrium

After the above simplification the equation of motion (eqg. (2.59))
is of the form

(22022 )it 2 e i i (F woeis 2\ | Gveoe
0 + 0 +
0 (}% +723—i)\77'
1 (H&__ _Z)ﬁ _l_s%ﬁ&OLS[R] (3.9)
Ry s Z?z Rs R* Rs*
+?’ 0 +531 0 = 0
B i )P : —Sg Ls: 664
ﬁ% s R* R
with R 2
Ls[ﬁ] = (1+ Rza) (Rgg - % Rg) - 2 RsR Rez * Rs2 Rpz™ —%‘
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Equation (3.9) is abbreviated
RET AN +F* = o (3.11)
F* = 'F?p) + F?B) .

As the plasma should always be in radial equilibrium, i.e.

(§ES+§S = 0 (3.12)

eq. (3.9) yields for the radial component

2513
R™R R
2-— ~N N7 o~ -
Ls[RJ' ';§§— s P Y I:i—E (Rzz§>vz v - R, %% p)} = O (3.13)
z

as the equation for radial equilibrium (equation of motion in the
s-direction). As the individual quantities in eq. (3.13) are time
dependent, the equilibrium position shifts (quasi-equilibrium).

The vacuum magnetic field adjoining the plasma (in the radial di-
rection) is described by the differential equation

L. [Rl = o. (3.14)

The equilibrium condition for the plasma boundary (plasma-vacuum

interface) is 5
B B

2
P e LV
p + 5 > (3.15)

where B is the internal magnetic field at the plasma boundary
(on the plasma side) and B, the external magnetic field at the

plasma-vacuum interface (on the vacuum side).

With egs. (2.20) and (2.21) Bp (and B,) can be expressed in R(s,z)

2
2 i S
+ B - —m——g (1 + R,
R RS

2 2)

and hence the equilibrium condition in s,z cocrdinates

82 2 82 2
2 p + I—F—=— (1 + R, ) i e L] R, ) .
oundary 2 2 plasma 2 2 vacuum

R Rs R Rs
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At the plasma boundary let s = Sp - The equilibrium condition for
Sg is rearranged as follows:

2 2
5 = 5 R + —;5 - —lf =. 0,. (3.16)
s” (1 + R, ) R R
Sp plasma vacuum
The equation of motion in the z-direction is
S(C®+2% +F® = o. (3.17)
From eg. (3.9) this gives us
2
& 9 ~z ° ~Z Rz 2.~ 2 — s R,
QUse*Visz) V-lagPrszp+ 551, [R]=0.
s R Rs

If the differential expression LS [Rl is eliminated with eq. (3.13),
the resulting equation of motion in the z-direction is

2

2z P = O

%[(1+R22)(§E—+vz§;) V¥ + R, R,V vz]+

3.13 Pressure equation

The pressure equation (eg. (2.67) or (2.68)) reduces to

2 — P) -~ —_ 2 ~ —_ o~
ST Ptz (PVZ:) + (¥-1) pigg'vz +¥p (V% 6z + DIW ) +
a“z 2
+ (-1) (S'ES +8°“6z) = 0
(3.19)
with 2
GZ =,é—-zln(RRs)
P)
DIW = st In(RR))
52 = -—-3‘——2-%% . (3.20)
1 + R
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3.2 Initial conditions and boundary conditions

3.21 Initial conditions

The calculations start with an already compressed plasma in radial
equilibrium (eg. (3.12)). Accordingly, we give as initial conditions
a radial pressure profile P(r) and a vacuum magnetic field B_ =

const (r) such that equilibrium exists.

The initial state should be an equilibrium state, i.e.
F“(f,t=o) = 0.

From the equation of motion (eg. (3.9)) we thus get the equilibrium

conditions 2

1+R, 9 2 " 52(1+R22) []
(=—+~—-R_==) P - L |R|{= O
RS s zZ 22 R2 RS4 s
(3.21)
R .9 7} 52 R
’ Z by o
(- =*s—+s=)p+——75L_|R[ = O. (3.22)
Rs’as Dz R2 R 4 s [ ]
s
o ? — 7~
Eliminating 55 P or 57 P yields
2 —
ﬁp = 0 (3.23)
Db g2
ﬁp‘”z—_?Ls[R} = 0. (3.24)
R Rs

Eg. (3.24) expresses the differential equation for the equilibrium
€;P'- E’X B =0 in magnetic field coordinates. Eg. (3.23) states
that p = p(s) is constant along a field line. For a given pressure
profile p = p(s) eg. (3.24) (the differential equation for the
initial equilibrium in the radial direction) can be integrated, i.e.
with given boundary conditions for R(s,z) the distribution of the

field lines R = R(s,z) can be calculated.

The problem of giving an arbitrary pressure profile P = P(r,z) in

equilibrium with the magnetic field cannot be solved generally since
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in the case of equilibrium the function S = E(s,z) has to satisfy
the condition eq. (3.23).

One may, however, proceed as follows:

Let a radial pressure profile P = P(r) be given in a surface
z =2z in which for all r the radial component of qgg magnetic
field Br(r,z) and its derivative with respect to z, 3}? vanish.
For this 2z = z it is then possible to calculate the function
p = p(s), and thus the pressure distribution p = p(s,z) is deter-

mined by eg. (3.23).

Under these conditions (i.e. B = B(r) = (0,0,Bz(r)) as plasma mag-
netic field and ﬁg = const = (O B ) as vacuum magnetic field)
. . A —> —» 20, .
the differential equation =-V¥.p + j Xx B = 0 can be integrated
2
2 B
p(r) + BEL - 2. (3.25)

With the relation eg. (2.21) between magnetic field and field lines

s

B_(r) = o5

4 RRs
we get from eg. (3.25)
S 2 _ 2

(RRS) = BO - 2 P(r)
or 7

s ds = '\1302 - 2 P(r) dr . (3.26)

For known P(r) the solution of this differential equation yields
the relationship

r = R = R(s)
and hence
p=— R )RR (8) )= P(8)

With the function p = p(s) determined in this way it is then pos-
sible to solve the differential equation (3.24) for given boundary
conditions R(s ,2) = (z), i.e. to calculate the distribution of

the field llnes (i.e. the coordlnate system)

R = R(s,z) .
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The pressure profile p = p(s), with é% p=0 , and the mag-
netic field determined by R = R(s,z) (egs.(2.20) and (2.21)) are
then in equilibrium. In the event of a small disturbance due to

3% B, # 0 we can still calculate the equilibrium by iteration.

It is assumed that the pressure profile P = P(r) is given by an
analytical function (parabola)

- 2
P(r) = PeireFy (R/RB) . (3.27)

With such a pressure profile the integral of the differential -~
equation (3.26) is obtained by quadrature

% g2 = -%% (a2 +0b R2)5/2 + C (3.299)

the abbreviations used being

_ 2
a = B, e Py (3.28)
b = 2 P1 .
RB2
Because of R(s=0) = O we get for the integration constant C
cC = - _3_3 (3.30)
and hence
&= = ;gg ((a + b R2)3/2 - a3/2). (3.31)
P

This equation gives the relation R = R(s) for the interior of

the plasma (0 € r £ Ry oOrF 0 ¢£s < ) .

SB

For the plasma boundary r = RB(=RB), s = sg (=SB) eq.(3.31) gives

SB = \J -3-?3 ((a + bR2)/2 _ 23/2) (3.32)
and hence the step size DS = As in the s-direction (equidistant)
DS = SB/IP (3.33)

where IP 1is the number of intervals in the plasma.
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Solving eq. (3.31) for R yields

R = RE) v & [(E—fybﬁ s + 1)2/3 S J (3.34)

the location of the magnetic field lines within the plasma

( 0O R €£€RB, O< s <€ 8SB ).

The location of the magnetic field lines in the vacuum is deter-
mined from the definition of the magnetic field surfaces eq.(2.1)

(where transformation from F to s(eq. (2.18)) is used), viz.

r

.}- 2 _— = ] L 1

5s° = F = /Bz(r' ,z,t) r' dr' . [3°38)
a

Thus, for the plasma boundary r = RB, s = SB it holds in parti-
cular that
RB

1
 s8? - O/Bz(r',z,t)‘ r' dr'. (3.36)

For the vacuum RB< R € RC, SB £ s < SC
(RC = Rc coil radius, SC = Sc value of s at the coil) the inte-

gral eq. (3.35) yields

RB R
% 52 = ,/’B r dr + J/B r dr .
r-0 2 r=R8 ©

The first integral is known (eq.(3.36)) and the second can readily

be evaluated because of B0 = const (r) :

g2 SB® + B, (R? - BR®)-: (3.37)

This is (analogous with eqg.(3.31)) the relationship R = R(s) for
the vacuum (RB¢r<RC, SB<s<SC).

For R = RC we obtain the value of SC

T

sc = \/3132 + BO(R02 - RB?) (3.38)

and hence of the (equidistant) step size in the vacuum DSV = Asv
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DSV = (SC - SB) / IV

where IV is the number of intervals in the vacuum.

Solving eq. (3.37) for R gives

R = R(s) =‘RB2 + g (s® - sB°) (3.40)
(o]

the location of the magnetic field lines in the vacuum

(RB<R<RC, SB¢<s¢<SC).

Given the plasma radius Ry, coil radius R, Vvacuum magnetic field
BO = (o, o, Bzo)' and a pressure profile P = P(r) at z = z,, @
plasma magnetic field and the coordinate system R = R(s) are cal-
culated first for z = 2z by means of the given equations. With
given boundary conditions R(sc,z) =_Rc(z) the solution of the dif-

ferential equation (3.24) gives the coordinate system

R = R(S,Z) »

in such a way that equilibrium between the magnetic field (deter-
mined by R = R(s,2z)) and the gas kinetic pressure p = p(s,z% with
3%-p(s) =0 , is ensured.

The two coefficients Po and P1 of the pressure parabola can be ex-

pressed by the corresponding values of the particle density ng, ny

and temperature kTo, le. A parabola profile is given for the den-
sity n(r) = n, - ny (R/RB)z. Together with a given temperature
kT(xr) = kTo, it is then possible to determine a pressure profile

= 2
P(r) = nj kT - n; kTj (R/RB)
Po = ng kTo ’ P1 = n, kTo .
If Py is now changed in proportion to a given temperature profile

b
Y Py => Py + (n, - ny)* KTy,

radial parabola profiles can be given as initial conditions for
both the density and temperature. (The temperature kT(r) is cal-

culated from this pressure profile and the given density profile
by kT(r) = P(x) / n(xr).) *
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3.22 Bouhdary conditions

To solve the problem we should really have to calculate the entire
external space as well. This is extremely difficult not only be-
cause of the complicated physical conditions involved, but also
practically impossible because of the limited storage capacity of

a computer.

The processes in this external space, however, exert only a slight
influence on the interior of the plasma since the external space

is practically a vacuum.

The assumption of a periodic continuation of the magnetic field
means that for the field lines R = R(s,z,t) there is a vanishing
derivative with respect to z in the end plane

%_}3/ i (3.41)
Z
end plane

For the boundary conditions of the dynamic quantities §>', Q\'r’z, P
and the thermal current §z it was assumed that the plasma that has
escaped through the end plane should have no after-effects whaq:bo-
ever on the rest of the plasma, i.e. the plasma should adjoin an
infinitely large vacuum. When difference equations are formulated
in integral form where flows through the boundaries of volume ele-
ments are written by interpolating the neighbouring quantities
(within and beyond these volume elements), this means that for the
last volume element this flow is expressed only by the internal
quantities. This amounts to an extrapolation. As the flows are
calculated by averaging the values of the quantities in the boun-
daries (linear interpolation), the extrapolation at the ends is
linear. That is, the boundary conditions for the dynamic quanti-

ties Y:{?, (é-?z), o 52} are:

2 (3.42)
Y = 0 . .

3.2

9z end plane
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3.3 Brief formulation of the initial boundary value problem

with radial quasi-equilibrium

system of equations

In the following the symbol ~ denoting that the quantity A:
{Sa,p,p, 7'} is meant in KS2 (i.e. A=X(§,t)) is omitted.
We thus have

g=9 ¥ =V p=P T =T,

The system of equations is then written

-?;c—gb+———(go V)+§>[VGZ+DIVWJ o (3.43)
Vi 9 Rszz 2 1 1 2
(£ + V==) V + ' 5S35z P= 0. .
it 9z 1+RZE k 14R,, 29 9z (3:44)
-5-25?+-—(PV)+ (y-1) P == 2 V+yP[VGZ+DIWJ
(3.45)
p) X Pl » 2
- (y-1) = (=== -Z=T) - (y-1)(———5==T) GZ = O .
Y 72 1+R22 92 ) (7 )(1+RZ2 2Z )
R, R
Lg [R]- {72— -—-S-‘—-é (RZZSJVE - R, 7% P){= 0 (3.46)
1+4R, ( 0¢ S<SB )
L [R] = 0 (3.47)
(SB<S«sC)
2P 2 [ 1
-7/ Rg ( QJ/'{ ey = 0 (5:48)
s“(1+R, R Ry (s=5B)
SB Jiac /{=LA
where ;
Gz = =~ In(RR) (3.49)
J
DIVW = -;-Eﬁn(nﬁs) (3.50)
L [R] = (1+R®)(R,, - £ R)) - ERSRZRSZ +RPR,_ +RE/R. (3.51)
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Initial conditions

Let z-independent initial distributions of the particle density
n = n(r) and temperature kT = kT(r), i.e. a radial pressure pro-
file P = P(r) in the form of a parabola

- = PN
P(r,t=0) = P_ - P, (RB)

and a vacuum magnetic field B constant in ¥ and z be given. With
eqs. (3.34) and (3.35) we get the location of the field lines for
t = 0. This distribution is in equilibrium. Let the velocity be

V = V(r,z,t=0) = G. |

Il

Boundary conditions

The periodic continuation of the magnetic field B is given by
2R _
7z | FeO

end plane

The free outflow of the quantities Y :ﬁ% (§~V),P,q}is described by

2
——3—2‘5\1 - o.

9z
end plane

4., Results

Calculations were made for the plasma configurations in the

ISAR III theta pinch experiment /12/.

This plasma was chosen because the fluid theory can be applied to
it with relative ease and because, moreover, measurements of end
losses in this very experiment were already in progress.

The essential data for the calculations are:

Ceil length 2 x ZL = 30 cm
Coil radius Rcoil = 3.5 cm
Plasma radius RB = 0.4 em

Mean field < Bmak> = 70 kG
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Fig. 4 The most important data for the calculations are:

RB = 0.4 cm, Tcoil = 3.5 em, ZL = 15 cm, <Bmai>= 70 kG.

As it is assumed in the calculation that the B in the coil vanishes,
wa

a mean maximum B was taken. The measured half- width of 0.4 cm/used as

plasma radius RB (also regarded as a value averaged over time).

The radial profiles for the initial density and initial temperature
(for the calculations) are plotted in Fig. 5

n - kT
l'.1016cm.3]4X [eV] A
6,25 400
225
o- = o —
r r
RB RB

Fig. 5 Radial initial distributions of particle density
n = n(r) and temperature kT = kT(r). |
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4.1 Influence of thermal conduction on end losses

4,11 Mass losses

The decrease of the total mass m over time t, normalized to the
total mass m at the start of the calculation (t = 0), is plot-
ted in Fig.6, first for calculations allowing for thermal con-
duction (x>0 ) and then neglecting thermal conduction (% = 0 ).

The mass decreases approximately exponentially with time. A cha-
racteristic for the mass decrease is the containment time 7
this being the time taken by the mass to decrease to 1/e of the

initial mass (e -folding time).

n=nlr=0,2=0,t)

T
0 05 10 15 20 25 tlpsecl

Fig.6 Fig.7

Relative mass decrease ‘ Time variation of the particle
M(t) / M(t=0) allowing for density n in the centre of the
(2 >0 ) and neglecting (Xx=0) vessel (r=0, z=0) for x>0 and

thermal conduction. x =0
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The influence of thermal conduction is shown by comparing the
Ty values:

o

ﬁg = 1.3 psec for the case x =0
ZH = 1.7 nusec for the case 2> 0.

The particle density n in the centre of the vessel (r = 0, 2 = 0)
is plotted in Fig.7 as a function of time. This reveals the in-

fluence of thermal conduction on the local mass decrease.

In the case without thermal conduction ( 7 =0 ) the region in the

centre of the plasma remains undisturbed until reached by the rare-
faction wave due to the outflow of plasma at the end. This happens
after about 0.7 psec, the time taken by the wave to propagate from

the end to the midplane with the speed of sound (c2 =Yy 7? ).

If the calculations allow for thermal conduction, first we observe
a rise in density in the midplane of the coil. This can be ex-
plained as follows: Because of the diffusion (thermal conduction)
a decrease in temperature at the end will be followed quite soon
by a decrease in temperature in the interior (cf,Fig.10). This re-
duces the gas kinetic pressure P. Owing to the equilibrium con-
dition -V P+ 7x§=0 the plasma will therefore be radially com-
pressed until the gas kinetic pressure P and magnetic field pres-
sure B2 are again in equilibrium. This causes a rise in den-
sity (for z = 0) during the first half usec.

The mass decrease is slower if the dynamicsof the outflow is
affected by thermal conduction. This can be explained qualitatively
by the fact that the thermal diffusion makes the pressure gradients
smaller and hence the acceleration in the z-direction as well.

The variation of the density on the axis as a function of time,
i.e. N = N(r=0,z,t), is plotted in Fig.8. It is seen that the
density on the axis after 2 psec is about twice as high in the

case of finite thermal conductivity as in the case of 2 = 0.



Fig. 8 Density profiles n = m(r#o,z,t) calculated without thermal
conduction (2¢= 0) and with thermal conduction ( ¢ > 0 )
for the axis and times up to 2 psec.

4.12 Enerqgy losses

The influence of thermal conduction on the energy end losses is
somewhat more differentiated since the energy is split into various

components and the interactions are more complex.

First we plot in Fig.9 the total energy E, again normalized to the
total energy E, at the start of the calculation, as a function of
time. The total energy decreases more quickly in the case 3 >0 than
in the case > = O (in contrast with the mass decrease). For later
times (f> 1.8 psec), however, the energy loss is the same within
the calculating error of approx. 1 %.

The local thermal energy for r = 0, z = O is plotted in Fig. 10 as
a function of time. For times t >1 nsec kT is about twice as high

in the case 2> =0 as in the case with thermal conduction.
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Fig.9 Fig.1l0
Relative energy decrease Time development of the tem-
E(t) /E(t=0) with ( »>0) perature kT in the centre of
and without (x=0 ) allow- the vessel (r = 0, z = 0) for
ance for thermal conduction 2%>0 and >0=0 .

In Figs. 11 and 12 the various components of the energy losses
are plotted for the two cases with and without thermal con-

duction.

The total energy of the plasma is composed of
i Ekin * Einerm
where Ekin -_.-///-;i,- §V2 djx kinetic energy,

Etherm =j%7% P d3x thermal energy.

The losses of kinetic energy are obtained by calculating the
energy transport through the end plane

a5, = fI] GyvP)vae a’t .
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The losses of thermal energy, first by convection and then, in the

case 2 >0 (with thermal conduction), by diffusion as well, are

calculated as follows:
AE

p

AEq

]

/jf(gP)thdzf

[ - a )ae.ate
)

where q = }Lﬁ Y is the thermal current.

These energy components of the plasma are now in interaction with
the energy content of the magnetic field

| fff %3 x .

E

Il

magn
E4 E4
Eo =0 AE Eo A >0 E
A E AE )
s [ :
L i ] FETN 91 ) k=X ° - 01
_—==—"""energy from magnetic field e energy from magnetic field
o 10 / 0
\\
= S~ AEklf'l
09 1¢ i --01
i kinetic energy
0841 --02
|\
.7 \.."-_ .=
0 A 8E, 03
0.6" \\ o 2 _convection - 04
\ heatconduction " RE;
= == i
05 \_\ 5 05
04 - X --06
\
03 \, --07
\,\
02 \.
™
2 0.1 1 _E_\\ total energy
total ¢mrgy\-\.\_\' E, o
0 (877 [FS 7% o WS R B £ b [ et 1y [ 0 | | A R Bl Bl o A B ] [ o e 1 1 >
0 10 20 t[psec] 0 10 20 t [psec]

Figs.ll and 12 Relative energy losses calculated with (x >0)

and without ( 2 = 0 ) thermal conduction.
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The total energy of the magnetic field is composed of the energy

of the vacuum field EB and the energy of the magnetic field in
the plasma E_ , i.e. v
B
p
Emagn = EBv + EBp >

This quantity is constant. The energy gain of the plasma from the
magnetic field is thus

AEB/ = Emagn/ - Emagn/ :
=t1 £=0 t=t1

The energy variations AE&.Aﬁak/AE}ﬂﬂEr are all normalized to
the total energy of the plasma at the beginning of the calculation
(¢t = 0). The time development of the individual components is plot-
ted in Fig.ll, where the thermal conduction is neglected (2 = 0 ).

and in Fig.12, where thermal conduction is taken into account.
The energy gain from the magnetic field e;% is about the
same in both cases and rises within 2 psec to just under 10 %.
In the case with thermal conduction it therefore rises somewhat
faster because the energy losses then increase faster, i.e. the
energy increase makes the compression of the plasma stronger at

earlier times (approx. 0.5 psec).

It is conspicuous that with allowance for thermal conduction the
losses of kinetic energy and, in particular, energy losses due
to convection strongly decrease. This can again be accounted for
qualitatively in terms of the smaller pressure gradients caused
by diffusion.

The time developments of temperature, pressure, and velocity on
the axis (r = O) are plotted in Figs. 13, 14, and 15, where the
influence of thermal conduction on the individual profiles is

obvious.



Figs. 13,14,15

z-t profiles for temperature kT(r=0,z,t),
pressure P(r=0,z,t), and velocity V(r=0,z,t)
for the calculations with (x> 0) and without
(x = 0) thermal conduction.
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4.2 Dependence of mass losses on the initial parameters

Studying the influence of the initial values on the end losses would
require an enormous amount of computing time for reasonable ranges
of parameters. The calculations were therefore made with a one-
dimensional model that treats only the z-dynamics and neglects the
radial dependence of the profiles and the influence of the magnetic
field. The result of varying the initial density ng and initial
temperature kTo for the characteristic containment time 2;7 for

the mass is plotted in Fig. 18.

The influence of the coil length ZL for Zh is shown in Fig. 19.

These values were also calculated with the one-dimensional programme.

The radial dependence was shown by calculating the initial distri-
butions as in Fig. 16.

n kT A
[ 1016cm-3]A CeVl
6.25 400
50
O— I~ J} =
| r [ r
R B R B

Fig. 16 1Initial radial distributions

An r-independent distribution of the particle density n, and a
relatively strong temperature drop in the radial direction means
that the speed of sound is much higher on the axis and hence the
outflow is much stronger than near the plasma boundary.As a result
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the initially r-independent density profile has a distinctly posi-
tive gradient in the r-direction after a time (t > 1 usec) (Fig.17).

n 6. 25E 16

N(R.Z)
(CM*x—3)

8.25E 16

N(R.Z)

Fig. 17 Density profiles n(r,z) for the initial distri-
butions in Fig. 16 after 0.6, 1.0, and 1.6 psec.
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Fig. 18 Dependence of the characteristic containment
time Ty on the initial densities nj and
initial temperatures kTo )
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Fig. 19 Dependence of the containment time Ty on the

coil length (ZL is half the coil length) and
the initial density n
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4.3 Discussion of the results - comparison with experiment

The quality of the results of such a computer programme for de-
scribing the dynamics of a plasma in a theta pinch experiment should
be examined from two different points of view: firstly mathematical,
viz. the convergence of the numerical solution to the mathematical-
ly exact one, and secondly physical, viz. the agreement of the

calculated result of this model with the actual processes.

According to the LAX-RICHTMYER theorem the numerical solution con-
verges to the exact solution. An explicit check of the relevant
criteria would entail a great deal of effort and is not discussed
here. Comprehensive justification for convergence is provided by
the fact that the numerical treatment is stable.

More definite information is afforded by checking the conservation
of mass and energy. It is true that the conservation laws for these
two quantities were ensured a priori by appropriate formulation of
the difference equations, but they are not exactly satisfied be-

cause of calculating and rounding errors.

In the calculations the mass is conserved for times of 2.5 musec
(approx. 500 time steps) to a maximum of 0.5 %. The energy balance
is correct to about 1 %.

Agreement with actual conditions is, of course, governed by the
quality of the model. In other words, the question is how re-
strictive are the assumptions that are made for the model.

Applying the fluid theory to the ISAR III experiment, on which the
calculations are based, is justified to a certain extent (mean free
path for the parameters used is about 2 cm) .

What is certainly not justified is assuming equal ion and electron
temperatures and neglecting the pressure anisotropy. An estimate
of the relaxation of the deuterium ions according to a formula of

Spitzer’s yields t,, = 0.1 nsec. That is, anisotropy of the ions will

M
disappear quickly relative to the characteristic times for the out-
flow (2 psec) and will therefore only be important in the initial

phases of the calculation.
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A more definite, but still not wholly adequate, answer is found

by comparing the results of the calculations with those of the
measurements.

Particularly useful in this connection is a quantity of some

experimental importance that characterizes the mass losses, viz.
the time T,,.

M
In the experiment the Tﬁ measured was
7 +
LM(exp) = (1.8 - 0.2) mpsec
and the calculation yielded
Th(calc) = 1.7 nsec .

In view of the relatively simple model this is very good, but it
should not be overestimated because the various neglected effects
may cancel each other.
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Summary - further problems

The purpose of this study has been to write a computer programme
describing the dynamics of a theta pinch as a function of two space
variables (r and z) and the time for a relatively simple plasma
model. This has been achieved. In particular, the end losses of mass
and energy were determined. The agreement with experimental results
(especially for mass losses) is very good as far as this first ap-

proximation of the programme is concerned.

Scope for extending the programme and its applications is afforded

mainly by three problems:

1) Generalization of the physical model:
That is, other effects will be taken into account. First the
calculations will be extended to a two-fluid model (i.e. T(i)%
T(e)) and the anisotropy of the ion pressure will be allowed for.
This point is of particular interest because marked differences
between the ion and electron temperatures have often been ob-

served in experiments.

2) Generalization of the initial state:
It should be possible to give any pressure profile P = P(r)
(calculated from arbitrary density and temperature profiles):

P(r) = n(r) . kT(r).

After discussion of the initial conditions (3.21) it should be
possible to give arbitrary field configurations (especially
mirror fields) by virtue of the boundary conditions R(sc,z) =
Rc(z) for R(s,z,t=0) and the condition 3%-P(s) =0 (i.e. pres-
sure constant along the field lines). This allows the end los-

ses from theta pinches with magnetic mirrors to be investigated.

3) Application of the programme to the investigation of dynamic
mirror fields in the linear theta pinch (LIMPUS with time and
space varying mirrors).

Making allowance for finite electrical resistance ( G < o ) and for
radial compression (possibly including radial inertia terms) are fur-
ther points that should be tackled once the problems stated have

been solved.
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The programmes for graphical representation of the results (func-
tions of two space variables and time) were written in collaboration
with U.Berkl. This was done for functions Y = ¥Y(z,t) (see Figs. 8,
13,14,15) and also for functions Y = Y¥Y(r,z) (Fig.l1l7). This graphical
output could be handled not only by a curve plotter, but also by

an electronic display unit (TV screen). The r-z diagrams were re-
corded from the screen with a camera at the G 3 computer at the
Max-Planck-Institut fiir Physik und Astrophysik. In addition to

the pictures shown here, a short film reproducing the dynamics
(taking the density n = n(r,z) for running time t) as an example
could also be made in this way.
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